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Outline

e |ntroduction & Motivations
e (Q-factor definition and calculation
e Review of classical VCO topologies
e Discussion on phase noise and LC tank design
® Choice of L and C, to optimize phase noise power performances
e Presentation of low voltage VCO structure suitable for high swings
® 2.4GHz 65nm CMOS BLE VCO measurement results
e Alternative synthesizer architecture based on FBAR

e Performance comparison with LC/XO PLL
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PLL performance is limited by XTAL and VCO phase noise

2.4GHz PLL phase noise with 48MHz XO
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Simple VCO structure

e Cross-coupled pair provides negative conductance

1/ LO-
Should balance tank loss (g,=1/R,) A

e -g /2 withg_=l/(2:n-U;) in sub-T LO+

e Calc R, with series/parallel transformation

e Large swing feasible (~2-V ()
Barkhausen criterion |:| I:‘
2
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Another simple VCO structure

e Current can be fed on both drains if
only a 2 terminals single coil is available

e Drain junction cap loading tank IB/Z@ 1B/2
Cv
o Limited swing (Vec-Vpsar)/2 LOX1 /H/ LO-
e Feed inductor midpoint instead 000
® Same V(lg) as calculated for XO L1
e Large swing feasible
e What happens if constant V. bias? M1 N

® Current keeps increasing until M, ,
leave saturation

e Strong non-linearity reduces gain

e |eads toincreased phase noise
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Complementary VCO structure (most popular)

e Equivalent to two cross-coupled inverters T
e Could potentially halve bias current :l
M3 M4
e g_of PMOS usually lower as same W/L
Cv
e Ampl. control with one biasing current source LO+ v LO-
e Without I;, desaturation and PN degradation | 000 !
e Poor PSRR: LDO can be used to provide clean V. L1
—
e Sensitive to PVT variations, limited V.. at low V. ><
e Watch-out for proper start-up in SS, Vv Tiow :l I:
M1 M2
e QOperation in sub/near threshold permit higher
swings owing to a reduced Vpcar |
. _ Ve = Vr °
® With Vg, the peak gate voltage  Vpgar = max| 5 UT,T
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How to optimize the phase noise power product of a VCO

e Noise

(1+7)-kT

#n 0

e Power

losc *Vpp —

e Noise x Power

Vosc *Vpp
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How to design the VCO tank? (obviously an iterative process!)

e Selection of coil type

e External coil Q up to 100, up to 2-3GHz, reproducibility of PCB

e Bondwire Very good Q but reproducibility issues (L=1nH/mm)
e PCB trace, microstrip line Suitable for SHF, IO modelling + ESD issues

® Integrated Attractive above 1GHz, Q~10-20@ 2.4GHz

e Determine the fixed VCO load (C;) mixers & PA, buffers, PLL dividers, VCO, routing

e Varactor C, need to cover desired BW & all manufacturing tolerances
Crp+C C

o Using k = —— 24X gpg f' = LA A — 1 (A¢ + AL + BW
Cr + Cy min Cy mIn f 2 \C L

e The tuning range and the min varactor size can be expressed as

— Vk -1 k—1
TR:_I_fMAX fMIN__I_ CV,MIN: o),

T fuax v T VEk+1 k' —k
e The max possible inductor value can be determined, phase noise perfs estimated
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Coil Q-factor limitation due to skin depth effect

e Skin depth simplified calculation

_ 2% g [P
5_\/(2“f)(ﬁ-501-5r) N e f

® For copper, 4, =1, p=1.68E-8 O'm

e §=1.33um @ 2.4 GHz

e §=0.27 um @ 60 GHz

e |t can’t be neglected

e Use EM solver to study impact more carefully (e.g. Momentum)
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http://www.coilcraft.com/0402HP.cfm

Equivalent model for discrete coils

® R, is DCresistance

® Ry r accounts for skin effect JUMJJL I

Ryar =k-+/f  kin[Q-s05]
Pad Air gap Pad %

e (C, defines Self Resonance Frequency

e R, &Ry, define Q @ SRF

e Model PCB, bondwire, bumps, PADS, routing wires properly (L=1nH/mm)

Upper
R1 R2 IiFl,f:it
e Use S/P transformations to get Q Partnumber (1) (&) C(pF) L(nH) K (MHz)

0402HP-1NO 6 0038 0030 1.00 2.70E-06 20000

0402HP-2N0 5 0.038 0.050 200 5.22E-06 20000
C1 R1 0402HP-2N2 4 0038 0040 220 570E-06 20000
0402HP-2N4 13 0.042 0.044 240 6.20E-06 20000
0402HP-2N7 11 0.056 0.044 270 6.46E-06 20000
0402HP-3N3 15 0.045 0.032  3.30 7.80E-06 | 20000
0402HP-3N6 10 0.045 0.022  3.60 8.10E-06 | 20000
0402HP-3N9 12 0.045 0.042  3.90 9.70E-06 | 14000
0402HP-4N3 10 0.040 0.048  4.30 1.12E-05 | 12000
0402HP-4N7 13 0.060 0.052  4.70 1.29E-05 | 12000
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http://www.coilcraft.com/0402HP.cfm

Typical discrete 402 coil Q-factor and Self Resonance Frequency
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Integrated coils

e Use Al RDL (aluminum redistribution layer) + ultra-thick metal process option
e Use RF-PDK coil generator to get expected peformances
e Usually limited to single layer coil
e Designing your own coil is feasible but requires expertise and is time-consuming
e Use EM-solver such as e.g. Momentum
e Difficult to guarantee error free design (LVS is tricky)
e Multi-layer coils and transformers can be engineered
e Typical performance of a compact integrated coil at 2.4GHz
e L[=7.9nH, R=8Q, Q=13, SRF=7.5GHz, C.x=65fF, C;,=637fF

e A wider area could lead to better performances
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Varactor design

There are different types of analog varactors

e Junction diodes, Inversion & accumulation MOS capacitance

Digitally-controlled varactors can be made with
e MOM cap and switches

® |nversion capacitance

Combined analog and digitally controlled varactor for fine and coarse tuning

DCO using 2" order AX modulator on 3-unit caps for fine frequency interpolation

e Varactor tuning ratio and Q-factor is a compromise
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Analog varactor using MOS capacitor (l)

e NMOS C(V) curve (neglecting overlap capacitance)

X . C/Coy
%, 1l s
maj carriers 0{9 21 S| min carriers channel o:I_C
% g \WI1 thermally generated =="0X
2 2 Coep
1-1/n i OcH —
Vr

Ve
e Inversion or depletion capacitance has very abrupt C(V) change leading to high gain

e Place substrate tap regularly to provide maj carriers as well to prevent Q degradation

2
Vo V- e Qscales as 1/L%, watch out for R; (W)

e OQverlap capacitance limit CM/Cm

Ve

e Alternate + & - fingers (virtual gnd)
n+ p+ n-well p+ N+

e No contact required in active zone
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Analog varactor using MOS capacitor (ll)

e Accumulation varactor has lower and more linear dC/dV curve than inversion

e dC/dV curve is max near OV bias provided G and S/D doping is reverted

e Equivalent to NMOS in NW or PMOS
Ve — N in PW using triple well
n-well
) ® Inverse doping shifts curve by V¢
Cvy/ Cv,, = 2.6 (I=0.46 pm in 0.18 pum CMOS)

11 e (Qscales as 1/L?, watch out for Rg (W)

1.0
. 0.9 \\ e Qverlap capacitance limit CM/Cm
o 0.8
207 \\ e Alternate + & - fingers (virtual gnd)
O 0.6 C

0.5

0.4 — e No contact required in active zone
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Digitally controlled varactor

® Finger type fringe MOM capacitor with MOS switch (no V.V, dependency on C)
e Size switch properly to get desired Q (1/Ron=B+(V-V;))
e Parasitic cap (MOS + fringe cap) determines on/off ratio

e Accumulation (switch shorted SDB terminals) or inversion (switch SD) MOSCAP
e Beware of the common mode potential to operate in low gain zone

e Frequency interpolation can be obtained with AX modulator for fine tuning

x[L2 2 2 MOM ACCU INV
frac (5..0) ]} 61sB I_l-PI _1_ {
6 E \_!_/ y » 10VF e E':
+ 11 OVF Con(2.0) I__o S <| i j—(x |—-O
)% ZH>°—° w UNE | TUNE | TUNE

6B
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How to get large swings: VCO core structure using cap attenuation

Use capacitive attenuation, k, to

e Linearize MOS and control its biasing

e Negative gm, V. are scaled by 1/k
L1 Cv L2
e Permit WI operation LO v LO-

I
e Decouple drain and gate voltages at DC %
: : Cy
e High Ve / V ratio k= . +C,
o V =V -V
OSC,MAX CcC DSAT C1 C3
® No PVT influence on V.
Mi=— —M2
e Suitable for very low V. operation _1C2 Cal_

e 0.5V VCO with 0.7V diff O-to-peak feasible
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Biasing of the VCO core structure using cap attenuation (l)

Gate biasing with diode-connected MOS

® lyco Set by mirror ratio (use a fraction for M, ,)

g, loss scaled by square of attenuation factor

e Resistors can be used to make diode connection LO v/ LO-

e (Cap at the drain nodes is at CM voltage
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Biasing of the VCO core structure using cap attenuation (ll)

Gate biasing with diode-connected MOS

® lyco Set by mirror ratio (use a fraction for M, ,)

e g loss scaled by square of attenuation factor

e Resistors can be used to make diode connection

e (Cap at the drain nodes is at CM voltage L1 Cv L2

6,7, mirrors to control via B EPMlG M7 /ﬂ Ms

e Similar I(Vosc) behaviour

as that derived for XO
( 2 ) IB

£
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Complete VCO structure including AGC loop

Amplitude regulation formed by
e R1,R2,C5 (BW)

o M5,R3 (PTAT lge)

L1 Cv L2

e constant amplitude F‘f |\/|7 N I‘CH: Ms

® insensitive to dQ, dC

Benefits

e Suppression of amplitude noise

e Min AM to PM conversion

* 1/fnoise of M, ,

e Min power consumption

e Great design freedom
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Vosc Vs | for VCO & REG  and different k values

1.4

1.2

[

VCO amp in [V]

0.4

0.2

0 2 4 6 8 10

current consumption relative to min critical current
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Details of the varactors implementation

e AC-coupled accumulation varactors can be used (dC/dV max near 0V!)
¢ Yields differential tuning (good at low V()

e Much better PSRR

e Size properly the resistors (Q-degradation) tune-
e Study common-mode behaviour to add missing Rb
elements & watch-out for added pole! LO+ LO-
e (Coarse tuning obtained with SC-C,,o\, Oﬁ ﬁo
. . CsoTC Cv Cc
® Ensure sufficient overlap with C, yya 2 S
e Obviousl ' ' bEl le IEl I_bO
y more than 2 bits feasible tune+ L
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Complementary AC-coupled VCO topology

e Relaxed phase noise or V. requirements ?

e Complementary structure may halve P I I
L VOSC up to (VCC - VDSAT)/Z %/I

C7 Cs
3 M4
Cs Cé
e |Implement biasing, AGC and CM ctrl loops b—l

Cv

e Truly low voltage structure LOO";. /' LO-
Al
® V..=1Vover PVT in production ® 000

L T
::}{9
§T°z
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Layout view and things to care about (65nm CMOS)

Calculate loaded-Q and equivalent series resistor
e Size routing lines adequately (R vs C trade-off)

Perform layout extract (RC)

Investigate where the energy flows

e Make good virtual ground

e Optimize Q of each branch

Evaluate biasing resistors cut-off

® DC noise up-converted but Rz << Ry ! m i
Connect both gate ends of MOS : 1:% ‘ ' y{"g .
e Calculate Rgape to find max W VCO is ~50% of PLL area
. . . — 2
Watch-out for vias, evaluate their resistance 0.2x0.3mm
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Measurements of the VCO gain across its sub-bands
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e Wide frequency range with 16 sub-bands (£9%)
e Very good overlap

e Almost constant KVCO over 2.4-2.48GHz
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2.4GHz PLL phase noise with 48MHz XO and consumption

VCO noise

e 1/f noise corner as high as 1MHz

® PN of -110dBc/Hz @ Af = 1MHz

Current consumption

e \VCO
e XO wi buffer

e Total PLL
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Quadrature generation

e 2 cross-coupled VCOs e Doubles the power & area, L matching

e LO @ carrier frequency & phase shifter e Power dissipation, Q degradation
+ limiter (RC-CR)

e LO@ 2-f. & +2in quadrature e Avoids LO pulling, usually better Q,
higher power since load is not
absorbed by tank

e Phase shifter in RX path e Linearity, noise figure, LO pulling
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Avoiding quadrature generation

e Since quadrature is not required in TX, use RC-CR phase shifter in signal path
e High LNA gain to mitigate 3dB RC-CR loss and NF of passive mixers

e Compromise on linearity

e 1
i — 1 1-Q amplitude
i i auto-tuning
1 I ¢ q
RF inout | | ;Z IF -1
inpu — >
: RCCR MIXER 3 X &bcjk=pBB
. |- 51 k- a
I I_F
SN 1 S o veA l
o—e | AGC control
LO D_L IJ
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(X ] C Copyright 2018 CSEM | Mead course, PLLs and Oscillators, EPFL, Lausanne, June 28, 2018 | David Ruffieux | Page 30



Quadrature LO generation with source coupled logic divider

Small signal Kirchhoff equations

/Ry —gmy, +s-Cpyp gmz g | Va2 _[0]
V3a

—gMmgz4 1/R3 4—gMs5g+5S-Cps4

Barkhausen criterion

(1/R1’2—gm1,2)'(1/R3’4—gm516)=0 O~ O 0O
5 _ LO g- -
S 'CIOJ,z'Cp3,4—(J)2'9m3,4'9m7,8=0
LO+ LO-
Large signal equations o— |-
Mo _T_ M10
C1 11

A I
V=2-L=2-R'IM1 T
gMy crit

@y =273 'Mll’”“ R 2(;'%3 if ®0 close to , o /2, injection locking
M1 .
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