Low phase noise and low jitter 0.1-10GHz VCO

David Ruffieux, senior expert & head of system-on-chip research

Swiss Center for Electronics and Microtechnology, CSEM

david.ruffieux@csem.ch

Lausanne, 28.06.2018

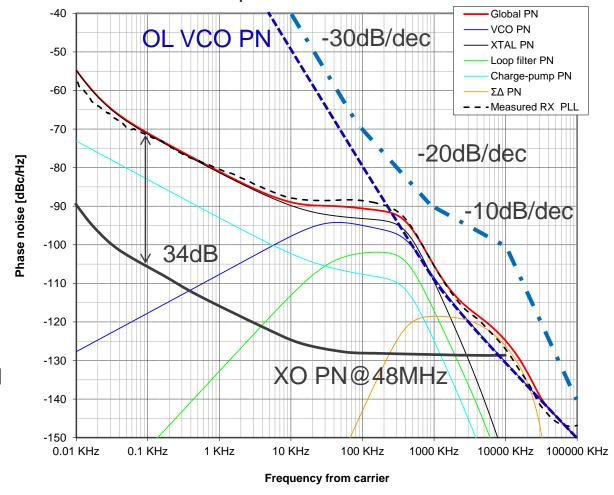
Outline

- Introduction & Motivations
- Q-factor definition and calculation
- Review of classical VCO topologies
- Discussion on phase noise and LC tank design
 - Choice of L and C_V to optimize phase noise power performances
- Presentation of low voltage VCO structure suitable for high swings
- 2.4GHz 65nm CMOS BLE VCO measurement results
- Alternative synthesizer architecture based on FBAR
 - Performance comparison with LC/XO PLL

PLL performance is limited by XTAL and VCO phase noise

Close-in noise limited by:

- XO phase noise
- Increased by 20 log(N)

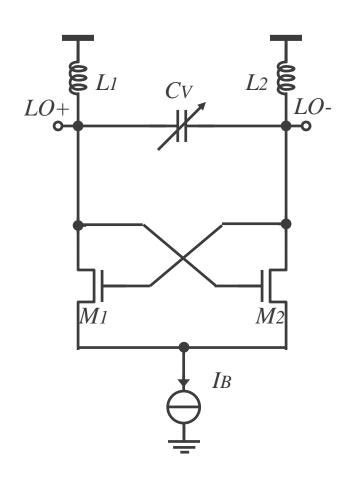

Far-from-carrier noise by:

VCO phase noise

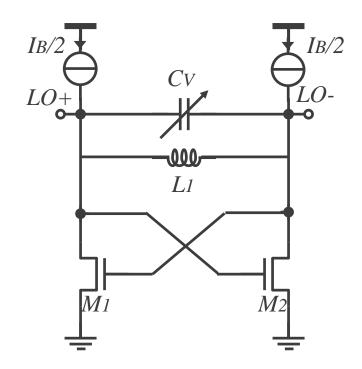
PLL Loop BW

 Chosen when those noise sources are equal

2.4GHz PLL phase noise with 48MHz XO

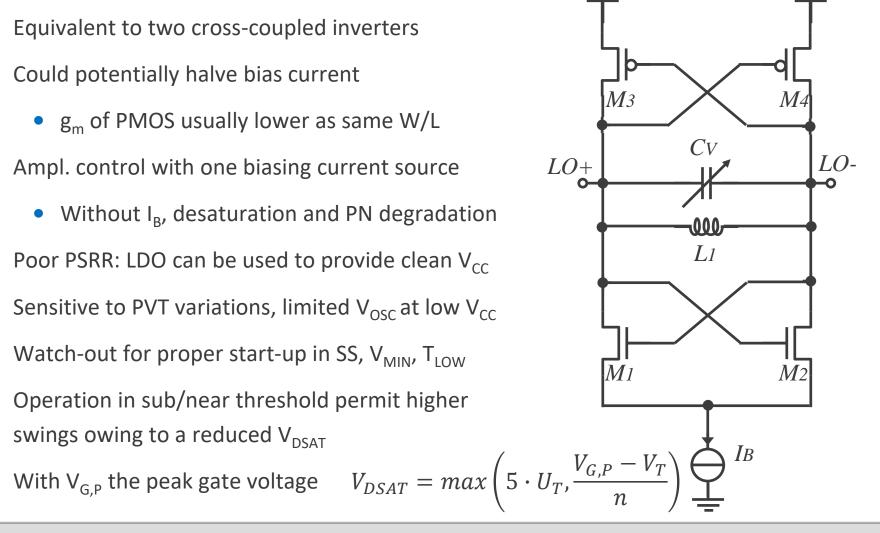


Simple VCO structure


- Cross-coupled pair provides negative conductance
 - $-g_m/2$ with $g_m = I_B/(2 \cdot n \cdot U_T)$ in sub-T
- Should balance tank loss $(g_p=1/R_p)$
 - Calc R_p with series/parallel transformation
- Large swing feasible (~2·V_{CC})
- Barkhausen criterion

$$\omega_o = \sqrt{\frac{1}{L \cdot C}}$$
 $g_m \cdot R_P = -1$

Another simple VCO structure

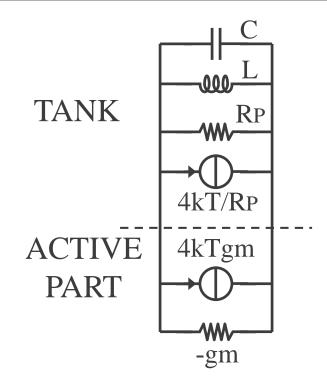

- Current can be fed on both drains if only a 2 terminals single coil is available
 - Drain junction cap loading tank
 - Limited swing (V_{CC}-V_{DSAT})/2
- Feed inductor midpoint instead
 - Same V_{OSC}(I_B) as calculated for XO
 - Large swing feasible
- What happens if constant V_{CC} bias?
 - Current keeps increasing until M_{1,2}
 leave saturation
 - Strong non-linearity reduces gain
 - Leads to increased phase noise

Complementary VCO structure (most popular)

- Equivalent to two cross-coupled inverters
- Could potentially halve bias current
 - g_m of PMOS usually lower as same W/L
- Ampl. control with one biasing current source
 - Without I_R, desaturation and PN degradation
- Poor PSRR: LDO can be used to provide clean V_{CC}
- Sensitive to PVT variations, limited V_{OSC} at low V_{CC}
- Watch-out for proper start-up in SS, V_{MIN}, T_{LOW}
- Operation in sub/near threshold permit higher swings owing to a reduced V_{DSAT}

How to optimize the phase noise power product of a VCO

Noise


$$\phi_{n} = \frac{(1+\gamma) \cdot kT}{Q} \cdot \sqrt{\frac{L}{C}} \cdot \left(\frac{\omega_{o}}{\Delta \omega}\right)^{2} \cdot \frac{1}{V_{OSC}^{2}}$$

Power

$$I_{OSC} \cdot V_{DD} \rightarrow \frac{V_{OSC} \cdot V_{DD}}{\sqrt{\frac{L}{C}} \cdot Q} \Big|_{V_{OSC} >> 0}$$

Noise x Power

$$\phi_n \cdot P_{OSC} \propto \frac{\left(1+\gamma\right)}{Q^2} \cdot \frac{V_{DD}}{V_{OSC}}$$

To get lower PN

- 1. Max Q
- 2. Max V_{OSC}
- 3. Min γ
- 4. Increase C

$$\omega_o = \sqrt{\frac{1}{L \cdot C}}$$

$$g_m \cdot R_P = -1$$

How to design the VCO tank? (obviously an iterative process!)

Selection of coil type

External coil
 Q up to 100, up to 2-3GHz, reproducibility of PCB

Bondwire Very good Q but reproducibility issues (L=1nH/mm)

PCB trace, microstrip line
 Suitable for SHF, IO modelling + ESD issues

Integrated Attractive above 1GHz, Q~10-20@ 2.4GHz

Determine the fixed VCO load (C_F) mixers & PA, buffers, PLL dividers, VCO, routing

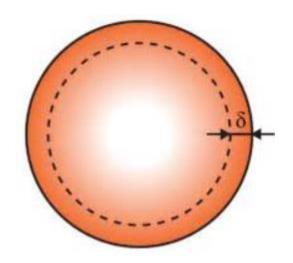
Varactor C_V need to cover desired BW & all manufacturing tolerances

• Using
$$k = \frac{C_F + C_{V,MAX}}{C_F + C_{V,MIN}}$$
 and $k' = \frac{C_{V,MAX}}{C_{V,MIN}}$
$$\frac{\Delta f}{f} = \frac{1}{2} \cdot \left(\frac{\Delta C}{C} + \frac{\Delta L}{L} + BW\right)$$

The tuning range and the min varactor size can be expressed as

$$TR = \pm \frac{f_{MAX} - f_{MIN}}{f_{MAX} + f_{MIN}} = \pm \frac{\sqrt{k} - 1}{\sqrt{k} + 1}$$
 $C_{V,MIN} = \left(\frac{k - 1}{k' - k}\right) \cdot C_F$

• The max possible inductor value can be determined, phase noise perfs estimated



Coil Q-factor limitation due to skin depth effect

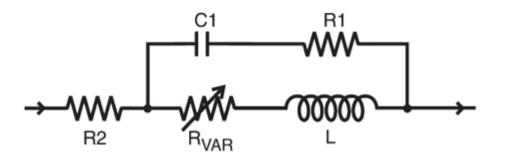
Skin depth simplified calculation

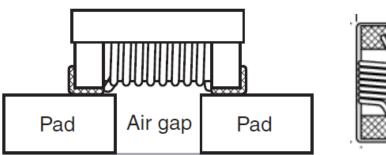
$$\delta = \sqrt{rac{2
ho}{(2\pi f)(\mu_0\mu_r)}}pprox 503\,\sqrt{rac{
ho}{\mu_r f}}$$

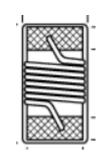
- For copper, $\mu_r = 1$, $\rho = 1.68E-8 \Omega \cdot m$
- $\delta = 1.33 \, \mu m @ 2.4 \, GHz$
- $\delta = 0.27 \, \mu m @ 60 \, GHz$

- It can't be neglected
 - Use EM solver to study impact more carefully (e.g. Momentum)

Equivalent model for discrete coils


- R₂ is DC resistance
- R_{VAR} accounts for skin effect


$$R_{VAR} = \mathbf{k} \cdot \sqrt{f}$$
 k in $[\Omega \cdot \mathbf{s}^{0.5}]$


- C₁ defines Self Resonance Frequency
- R₁ & R_{VAR} define Q @ SRF

Upper

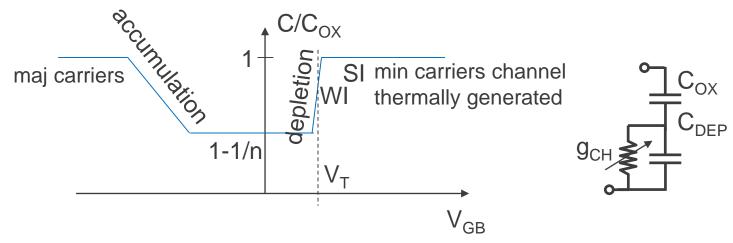
Part number	R1 (Ω)	R2 (Ω)	C(pF)	L(nH)	k	limit (MHz)
0402HP-1N0	6	0.038	0.030	1.00	2.70E-06	20000
0402HP-2N0	5	0.038	0.050	2.00	5.22E-06	20000
0402HP-2N2	4	0.038	0.040	2.20	5.70E-06	20000
0402HP-2N4	13	0.042	0.044	2.40	6.20E-06	20000
0402HP-2N7	11	0.056	0.044	2.70	6.46E-06	20000
0402HP-3N3	15	0.045	0.032	3.30	7.80E-06	20000
0402HP-3N6	10	0.045	0.022	3.60	8.10E-06	20000
0402HP-3N9	12	0.045	0.042	3.90	9.70E-06	14000
0402HP-4N3	10	0.040	0.048	4.30	1.12E-05	12000
0402HP-4N7	13	0.060	0.052	4.70	1.29E-05	12000

Typical discrete 402 coil Q-factor and Self Resonance Frequency

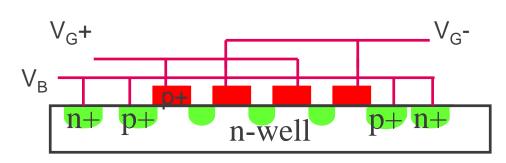
Inductance ² (nH)	Percent tol ³	900 MHz		1.7 GHz		SRF typ
		L typ	Q typ ⁴	L typ	Q typ ⁴	(GHz)
1.0	5	0.97	46	0.99	72	16.0
2.0	5	1.96	58	1.98	85	15.2
2.2	5	2.17	60	2.17	86	15.1
2.4	5 ,3, 2	2.37	60	2.38	83	14.0
2.7	5 ,3, 2	2.66	62	2.68	85	13.0
3.3	5 ,3, 2	3.26	66	3.28	95	12.8
3.6	5 ,3, 2	3.56	65	3.58	94	11.7
3.9	5 ,3, 2	3.87	64	3.91	98	9.50
4.3	5 ,3, 2	4.26	63	4.33	90	7.15
4.7	5 ,3, 2	4.67	58	4.74	83	6.85
5.1	5 ,3, 2	5.07	54	5.16	76	6.80

Integrated coils

- Use Al RDL (aluminum redistribution layer) + ultra-thick metal process option
- Use RF-PDK coil generator to get expected peformances
 - Usually limited to single layer coil
- Designing your own coil is feasible but requires expertise and is time-consuming
 - Use EM-solver such as e.g. Momentum
 - Difficult to guarantee error free design (LVS is tricky)
 - Multi-layer coils and transformers can be engineered
- Typical performance of a compact integrated coil at 2.4GHz
 - L=7.9nH, R=8 Ω , Q=13, SRF=7.5GHz, C_{SRF}=65fF, C_{TOT}=637fF
- A wider area could lead to better performances


Varactor design

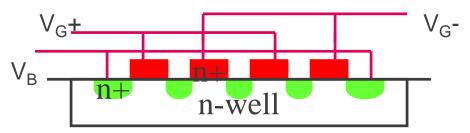
- There are different types of analog varactors
 - Junction diodes, Inversion & accumulation MOS capacitance
- Digitally-controlled varactors can be made with
 - MOM cap and switches
 - Inversion capacitance
- Combined analog and digitally controlled varactor for fine and coarse tuning
- DCO using 2^{nd} order $\Delta\Sigma$ modulator on 3-unit caps for fine frequency interpolation
- Varactor tuning ratio and Q-factor is a compromise



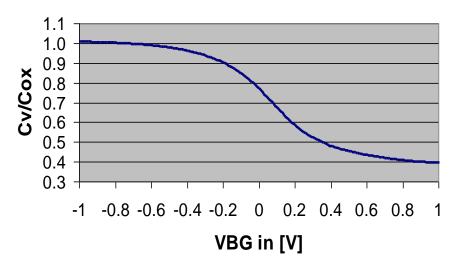
Analog varactor using MOS capacitor (I)

NMOS C(V) curve (neglecting overlap capacitance)

- Inversion or depletion capacitance has very abrupt C(V) change leading to high gain
- Place substrate tap regularly to provide maj carriers as well to prevent Q degradation



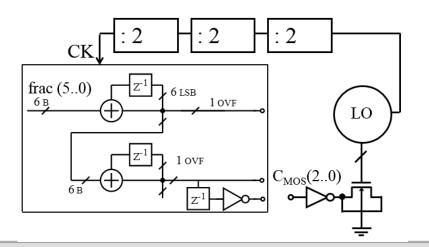
- Q scales as 1/L², watch out for R_G (W)
- Overlap capacitance limit CM/Cm
- Alternate + & fingers (virtual gnd)
- No contact required in active zone

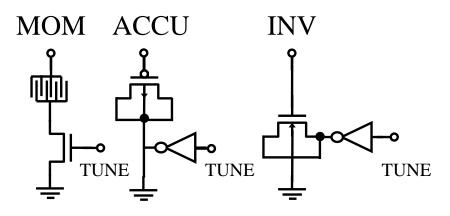


Analog varactor using MOS capacitor (II)

- Accumulation varactor has lower and more linear dC/dV curve than inversion
- dC/dV curve is max near 0V bias provided G and S/D doping is reverted

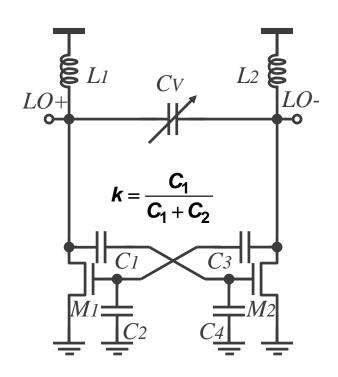
 $Cv_{M} / Cv_{m} = 2.6$ (I= 0.46 μ m in 0.18 μ m CMOS)



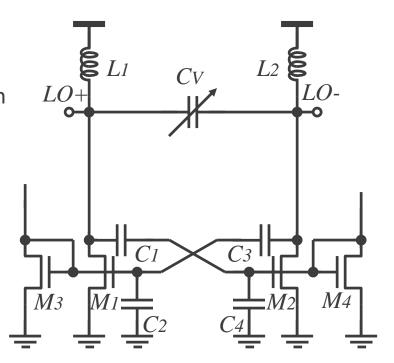

- Equivalent to NMOS in NW or PMOS in PW using triple well
 - Inverse doping shifts curve by V_{BG}
- Q scales as 1/L², watch out for R_G (W)
- Overlap capacitance limit CM/Cm
- Alternate + & fingers (virtual gnd)
- No contact required in active zone

Digitally controlled varactor

- Finger type fringe MOM capacitor with MOS switch (no V_{CC}, V_{CM} dependency on C)
 - Size switch properly to get desired Q (1/Ron=β·(V_{CC}-V_T))
 - Parasitic cap (MOS + fringe cap) determines on/off ratio
- Accumulation (switch shorted SDB terminals) or inversion (switch SD) MOSCAP
 - Beware of the common mode potential to operate in low gain zone
- Frequency interpolation can be obtained with $\Delta\Sigma$ modulator for fine tuning

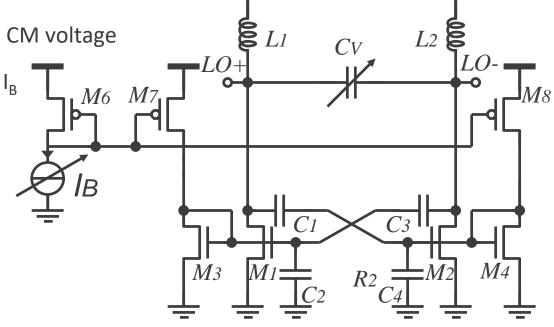


How to get large swings: VCO core structure using cap attenuation


Use capacitive attenuation, k, to

- Linearize MOS and control its biasing
 - Negative gm, V_{OSC} are scaled by 1/k
 - Permit WI operation
- Decouple drain and gate voltages at DC
 - High V_{OSC} / V_{CC} ratio
 - $V_{OSC,MAX} = V_{CC} V_{DSAT}$
 - No PVT influence on V_{OSC}
- Suitable for very low V_{CC} operation
 - 0.5V VCO with 0.7V diff 0-to-peak feasible

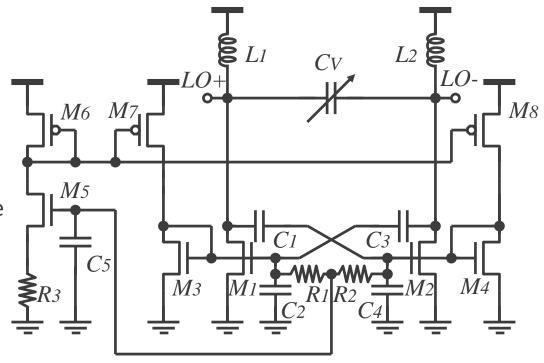
Biasing of the VCO core structure using cap attenuation (I)


- Gate biasing with diode-connected MOS
- I_{VCO} set by mirror ratio (use a fraction for M_{3,4})
- g_m loss scaled by square of attenuation factor
- Resistors can be used to make diode connection
 - Cap at the drain nodes is at CM voltage

Biasing of the VCO core structure using cap attenuation (II)

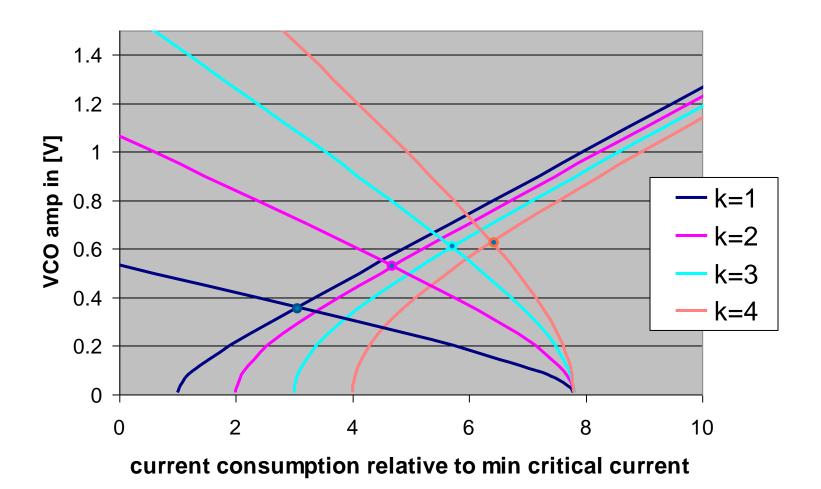
- Gate biasing with diode-connected MOS
- I_{VCO} set by mirror ratio (use a fraction for M_{3,4})
- g_m loss scaled by square of attenuation factor
- Resistors can be used to make diode connection
 - Cap at the drain nodes is at CM voltage
- Add M_{6,7,8} mirrors to control via I_B
- Similar I(V_{OSC}) behaviour as that derived for XO

$$I_{D_{1\omega}}(A) \frac{I_{\mathcal{B}0}\left(\frac{A}{n \cdot U_T}\right)}{2 \cdot I_{\mathcal{B}1}\left(\frac{A}{n \cdot U_T}\right)} = \overline{I_D}(A)$$

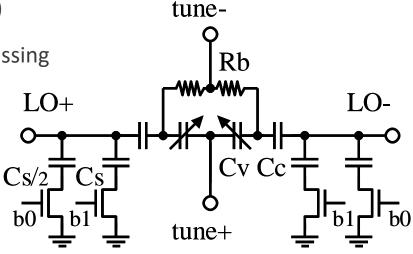

Complete VCO structure including AGC loop

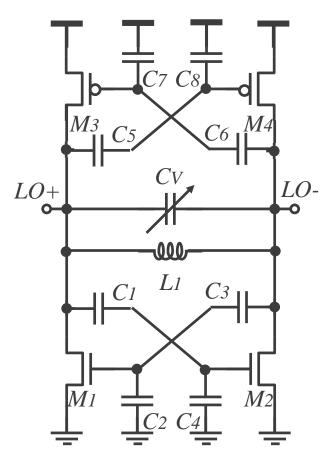
Amplitude regulation formed by

- R1,R2,C5 (BW)
- M5,R3 (PTAT I_{REF})


Benefits

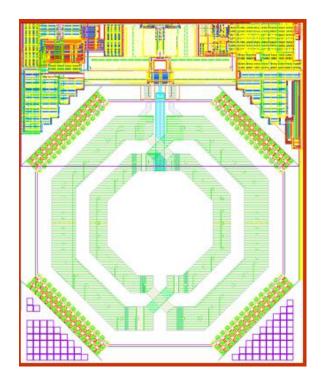
- constant amplitude
 - insensitive to dQ, dC
- Suppression of amplitude noise
 - Min AM to PM conversion
 - 1/f noise of M_{1,2}
- Min power consumption
- Great design freedom


V_{OSC} vs I for VCO & REG and different k values

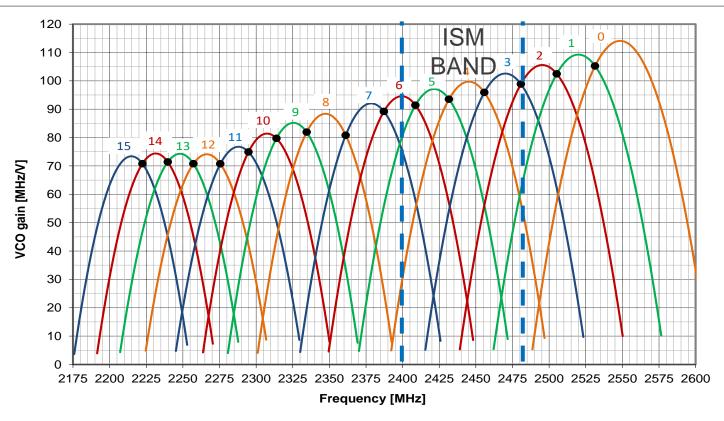

Details of the varactors implementation

- AC-coupled accumulation varactors can be used (dC/dV max near 0V!)
 - Yields differential tuning (good at low V_{CC})
 - Much better PSRR
- Size properly the resistors (Q-degradation)
- Study common-mode behaviour to add missing elements & watch-out for added pole!
- Coarse tuning obtained with SC-C_{MOM}
 - Ensure sufficient overlap with C_{V,ANA}
 - Obviously more than 2 bits feasible

Complementary AC-coupled VCO topology


- Relaxed phase noise or V_{OSC} requirements ?
 - Complementary structure may halve P_{DISS}
 - V_{OSC} up to $(V_{CC} V_{DSAT})/2$
- Implement biasing, AGC and CM ctrl loops
- Truly low voltage structure
 - V_{CC} = 1V over PVT in production

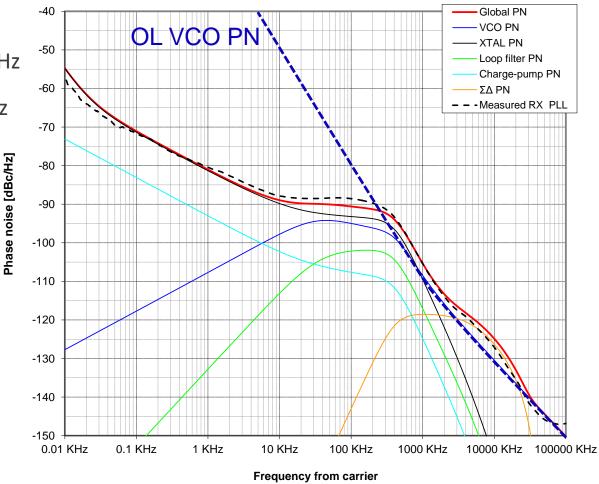
Layout view and things to care about (65nm CMOS)


- Calculate loaded-Q and equivalent series resistor
 - Size routing lines adequately (R vs C trade-off)
- Perform layout extract (RC)
- Investigate where the energy flows
 - Make good virtual ground
 - Optimize Q of each branch
- Evaluate biasing resistors cut-off
 - DC noise up-converted but R_{RF} << R_{DC}!
- Connect both gate ends of MOS
 - Calculate R_{GATE} to find max W_G
- Watch-out for vias, evaluate their resistance

VCO is ~50% of PLL area ~0.2x0.3mm²

Measurements of the VCO gain across its sub-bands

- Wide frequency range with 16 sub-bands (±9%)
- Very good overlap
- Almost constant KVCO over 2.4-2.48GHz


2.4GHz PLL phase noise with 48MHz XO and consumption

VCO noise

- 1/f noise corner as high as 1MHz
- PN of -110dBc/Hz @ $\Delta f = 1MHz$

Current consumption

- VCO 850μA
- XO wi buffer 100 μA
- Total PLL 1.5mA

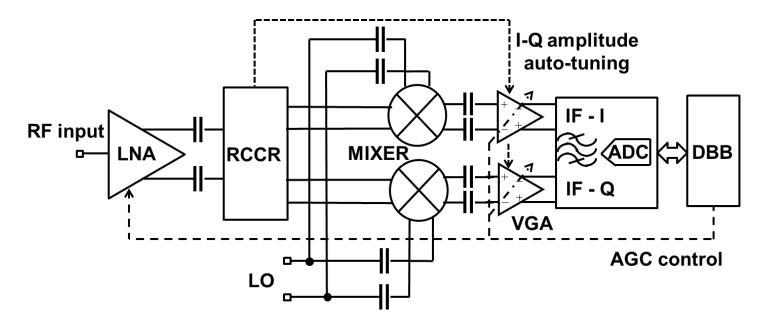
Quadrature generation

2 cross-coupled VCOs

Doubles the power & area, L matching

LO @ carrier frequency & phase shifter • Power dissipation, Q degradation + limiter (RC-CR)

• LO @ $2 \cdot f_C \& \div 2$ in quadrature


 Avoids LO pulling, usually better Q, higher power since load is not absorbed by tank

Phase shifter in RX path

Linearity, noise figure, LO pulling

Avoiding quadrature generation

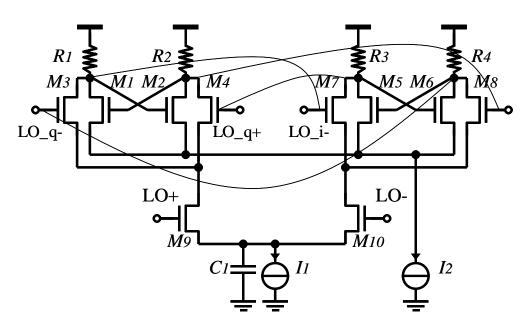
- Since quadrature is not required in TX, use RC-CR phase shifter in signal path
- High LNA gain to mitigate 3dB RC-CR loss and NF of passive mixers
 - Compromise on linearity

Quadrature LO generation with source coupled logic divider

Small signal Kirchhoff equations

$$\begin{bmatrix}
1/R_{1,2} - gm_{1,2} + s \cdot Cp_{1,2} \\
- gm_{3,4}
\end{bmatrix}$$

$$\begin{bmatrix} 1/R_{1,2} - gm_{1,2} + s \cdot Cp_{1,2} & gm_{7,8} \\ -gm_{3,4} & 1/R_{3,4} - gm_{5,6} + s \cdot Cp_{3,4} \end{bmatrix} \cdot \begin{bmatrix} V_{1,2} \\ V_{3,4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$


Barkhausen criterion

$$(1/R_{1,2} - gm_{1,2}) \cdot (1/R_{3,4} - gm_{5,6}) = 0$$

$$s^2 \cdot Cp_{1,2} \cdot Cp_{3,4} - (j)^2 \cdot gm_{3,4} \cdot gm_{7,8} = 0$$

Large signal equations

$$\hat{V} = 2 \cdot \frac{I_{M1}}{gm_{1,crit}} = 2 \cdot R \cdot I_{M1}$$

$$\omega_{o} = \frac{gm_{3}}{C} \cdot \frac{I_{M1,crit}}{I_{M1}} \rightarrow \frac{2 \cdot I_{M3}}{C \cdot \hat{V}}$$

if ω o close to $\omega_{LO}/2$, injection locking

